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ABSTRACT

We calculated electron-ion impact ionization using classical

binary-encounter collision theory. A differential cross section per unit

energy and momentum transfer is derived for two-electron scattering. We

obtain the total ionization cross section by integrating this differential

cross section over the appropriate energy and momentum transfer and the bound

.- electron-velocity distribution. To simplify the computation, we calculated
.

the bound electron-velocity distribution in the Thomas-Fermi approximation.
-.. Comparison with other theoretical calculations shows that our results agree

.
within 50% with the best quantum approximations. Our cross sections and rate

coefficients, which are sufficiently accurate for many practical applications,

are expressed in computationally simple form.
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I. INTRODUCTION

. .
.

Cross sections for electron-impact ionization of ions are used to

determine the non-equilibrium charge-state distribution of hot plasmas such as

encountered in fusion and astrophysics research.l To model these plasmas,

we need ionization cross sections for many highly stripped ions over a wide

range of incident electron energies. Since detailed quantum mechanical

calculations for many ionization cross sections are not available, the rate

coefficients employed in many plasma simulations are derived using semi-

empirical formulas. For example, the semi-empirical formula of Sampson and

Golden* for elec~ron-impact ionization of hydrogenic ions has been applied

to compute rate coefficients for partially stripped heavy ions in

laser-produced plasmas simulation.3 The Lotz formula,4’5 which was

obtained by fitting the experimental data available in 1966, is also

frequently employed in plasma modeling.

In this paper, we calculate electron-impact ionization of ions in the

classical binary-encounter approximation. The basic assumptions are: (1) the

incident electron interacts with only one target electron at a time, and (2)

the target electron is assumed to be ionized whenever its kinetic energy

becomes greater than its binding energy. We derive a c?assical differential

cross section per unit energy and momentum transfer for the scattering of two

electrons. The ionization cross section is then obtained by integrating this

differential cross section over the appropriate energy and momentum transfer

and the bound electron-velocity distribution.

To simplify the computation, we calculate the bound electron distribution

in the Thomas-Fermi approximation. Both the kinetic energy and binding energy
.-

of a bound electron are given in terms of the Thomas-Fermi potential. This

procedure allows us to compute electron-impact ionization cross section for
. --
. any ion in the periodic table. Using the Thomas-Fermi variable, we also

express both the cross section and rate coefficient in a scaled form which is

useful for plasma simulation,

To test our method, we have compared our results to a recent Born approx-

imation calculation for partially stripped nickel and gold ions and a
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distorted-wave Born exchange approximation7 for Na-like Ar ion. The

comparison shows that our results are, in general, within a factor of two of

the detailed quantum mechanical calculation. However, our approach is much

simpler and also gives results which are sufficiently accurate for many

practical applications.

Our calculation does not include any contribution to the ionization cross

section due to electron-impact excitation of an inner-subshell electron to a

autoionizing state lying above the first ionization threshold. This

excitation-autoionization process is currently being investigated

theoretically and experimentally in many laboratories. For a few times

ionized ion, this indirect ionization process can enhance the cross section by

as much as a factor of 20.8 However, our results should still be applicable

for highly stripped heavy ions since for these ions the excitation -

autoionization process does not contribute significantly to the ionization

cross section.

We have also calculated the energy distribution of secondary electron

produced by electron impact ionization using classical binary-encounter

collision approximation.

In the next section, we derive a differential cross section per unit

energy and momentum transfer for electron binary-encounter collisions. We

obtain a general formula for the case where the interaction between the

incident electron and the target electrons is not a Coulomb potential. In

Sec. III we apply this differential cross section to calculate electron-impact

ionization of partially stripped ions. Both the cross section and rate

coefficient are written in a scaled form using Thomas-Fermi variables. An

expression for the energy distribution of secondary electrons is also given.

.
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11. CLASSICALBINARY-ENCOUNTER COLLISION THEORY

In this section we derive a differential cross section per unit energy

and momentum transfer for the problem of two electrons scattering. This basic

cross section is used to calculate electron-ion ionization by considering the

collision approximately as a sum of scattering between two electrons. In our

calculation we ignore the interference effect between the electrons.

A. Differential Cross Section

To derive the differential cross section for a momentum transfer Fk and

simultaneously an energy transfer AEfrom the incident electron to the target

electron, we let the incident electron with velocity~2 and the target electron

initially with velocity~l in the laboratory frame. Their velocities after the

collision will be~’2 and~’l. The center of mass velocity and relative

I

..-

,. -..

velocity

The

measured in the laboratory frame are

1cm =4(-$+T1) 9

3=32-11 ,

1’ =12’ -T,’ ,

Ill = 1-!)’1 ●

momentum transfer in the laboratory frame is given by

~2v2
~2k2 . m21~2J -1212 =7 (1 - COSY) ,

where m = electron mass and y is the angle between the relative velocities,

$ and~’

The

electron

(1)

(2)

(3)

(4)

(5)

(Fig. 1).

energy transferal from the incident electron to the target

in the laboratory frame is

,2AE=}mV2 - ; mv22 ‘; mVVcm(cos@-cOs @’) . (6)
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The angles El and~’ are the azimuth angles of~l and~2 in a fixed polar

coordinate system where~cm is chosen to be the Z-axis. These expressions

for momentum and energy transfers are used later to derive the differential

cross section for

Leto(~1,~2)

electrons. Then,

binary-encounter collision.

be the total “cross section describing the scattering

the differential cross sectiondcr(~1,12)/d(Pk)d(AE)

to the total cross section u(~1,~2) by

J ‘(n)d(E)
dd7,72)

0(1,,12) = A

of two

is related

the following relation:

d(lik)d(AE) .

The integration covers all possible momentum and energy transfer from the

incident electron to the target electron in the laboratory frame.

Since the total cross section is a quantity independent

frame, it can also be calculated from the differential cross

center of mass frame. The result is

.-
,

-.

(7)

of the reference

section in the

(8)

where q‘ is the polar angle of the velocity vector~’ in a fixed coordinate

system.

Using Eqs. (5) and (6), we obtain the following differential relations:

*’ =
4h2kdk

3
m2V2sin~ sinG’ sin (q’ -q)

(9)

Substituting these two expressions into Eq. (8) for the total cross

section and comparing the result to Eq. (7), we find that

-5-



This is a general result for the scattering of two electrons with velocities

~1, and ~2. If the electrons interact by a Coulomb potential, the differ-

ential cross section in the center of mass frame takes the form

.,
.

This
.-

(d3/&)cm = m2e4/(~k)4 .
(11)

cross section is a function of the momentum transfer Hk only.

In applying the differential cross section [Eq. (10)] to calculate

electron-impact ionization of ions, we assume the target electrons have an

isotropic velocity distribution in the laboratory frame.
It is useful to

define an effective differential cross section of the form

where the angles, a and Q are the azimuth and polar angles of the vector

~1 in a fixed coordinate system where ~z is chosen to be the Z-axis. The

effective differential cross section du(V1,V2)/d(Wk)d(AE) depends only

on the magnitude ofl)l and~z.

To evaluate the integral, we express the cross section du(11,12)/d(Vk)d(AE)

as a function of the angle a. From the energy transfer relation shown in Eq. (6), we
obtain

.
,-

4E2E1sin2a +4 (E2-E1)AE - 4(AE)2
sinz~’ =

~2v2v2 .

cm

From the momentum transfer relation shown in Eq. (5), we obtain

Cos (q*’) = (1 -~z - cos~ cos @’)/sine sine’
mV

(13)

(14)

(15)
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Cos Q = [V*2 - VIZ)/2vvcm
(16)

COSE)’ =

Substituting

we find

where

(E2 - El - tiE)/tnVV,m . (17)

Eqs. (13) - (17) intotheexpressionfor@(V1,V~)/l(Vk)d(AE),

wIpT2) 2 ~e4=
d(Hk)d(AE) j12k3(acos2~+b CO~+C)l/2

9

a = - (~k)2E2E1/2m ,

b = ~/2){ (AE)2 - [(#ik)4/4m2]} ,

c = - [(E2+E1 )/4] { (AE)2 + [(4ik)4/4m2]}

Using the variable x = cos a, we reduce Eq.

cross section to the form

‘+
CIO(V,9V2) .fie4

‘2 d(~k)d(AE)
[

~~

x

The limits of integration are x+

where xl = (- b -=)/2a

However, it can be shown that xl .

dx

(ax2+bx+c )
1/2

(18)

+ (fik)2/4m[2E2E1 +AE (E2-E1)] .

( 12) for the effective

.

= AMIN1(l.0, X1),X- = AMAX1(-1.0, X2)9

s x2 = (- b +42 -4ac)/2a .

~ 1 and X25 -1 for any allowable

(19)

energy and momentum transfers.

Then, the integral becomes

1

1

1

xl
dx n

— sin
-1 2ax+b ‘m

z (ax2+bx+c)1/2 = ~
—) =—

‘r

● (20)

b -4ac
‘2 C

-7-
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Therefore, the effective differential cross section becomes,

&(V1,V2)/d(’6k)d(AE) =4mm3e4/k~kj62(~k)4 . (21)

Vriensg has applied this differential cross section to calculate the

energy transfer cross section for electron-atom collision. He claimed it can

be derived from the results in Gryzinski ’s10 paper. Using the asymptotic

solution of the Schordinger equation for the scattering of two lectrons,.>
Vriensll

Y. also obtained a general expression for the differential cross

section which includes interference effects. The derivation presented in this
..

paper uses only classical mechanics and is also conceptually very simple.

Using our derivation we can easily obtain a simple expression for the

effective differential cross section whenever the cross section in the center

of mass frame (dCJ/dfl)cmdepends only on the magnitude of the momentum

transfer. The result is

ti/d(%k)d(AE) = [4nm/(+$k2)2k1] (da(fik)/@)cm . (22)

Generally, if the interaction between electrons is not a coulomb potential, the

differential cross section (da/ck2)cmwill not be a function of Vk only.

However, the cross section (dJ/Ck2)cmevaluated in the Born approximation is

always a function of llkonly. In the next section, we apply Eq. (22) to study

the plasma screening effect on electron-ion collisions using the cross section

(dJ/dQ)Cm evaluated in the Born approximation.

B. Deb~e-Hiickel Screenina

In a plasma the interaction between the incident electron and the target

electron is described in terms of the Debye-Huckel potential. If we evaluate the

center of mass differential cross section in the Born approximation, then Eq. (22)
.

for the effective differential cross section becomes

M5+) 4’; g) ‘orn
d(fik)d(AE) = (jfk2)k, cm

(23)

4~m m2e4

= (fik2)2k1
9

[(Mk)2 + (flkDH)2]2
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‘here ‘DH = 211/ADH (ADH = the Debye-Huckel

c. Acceleration of Incident Electron

Both Eqs. (21) and (23) were obtained

screening length).

for scattering of two free electrons. The

effect of the average atomic potential on the incident electron is so far ignored in

calculation. We calculate this effect approximately by assuming that the incident

electron with initial energy E2 gains the kinetic energy W before the encounter with the -

target electron. The kinetic energy gained by the incident electron is exactly equal to ‘-

~(r), the average atomic field acting on the electron. In this approximation, the

effective differential cross sections Eqs. (21) and (23) become, respectively,

W19VJ al m2e4
=

d(llk)d(AE) C2+W )k1 x
and

WI+) 21T .
~2e4

d(fik)d(AE) = (E2+ep)k1
●

[
(tik)2+(~kDH)2

r

(24)

(25)

D. Energy Transfer Cross Section

We obtain the cross section per unit energy transfer by integrating the

differential cross section [Eq. (21)] over the momentum transfer allowed by

momentum conservation. For a given energy transferal, we have

(Ifk)min= (2m)1/2 [(E1tiE)l/2-E11/2] ,

(W) max =
(2m)1/2 [(E1+AE)l/2 +E11/2] ,

for E2~AE + El, and

(M) rein= (2m)1/2 E +AE)[( 2
1/2 - E 1/2, ,

2

(Mk)max = (2m)1/2 [( E2+AE)1/2 +E21/2] ,

(26)

(27)

(28)

(29)

for E2~AE +E1.
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Integrating the differential cross section [Eq. (21)] over the range of

momentum transfer given by Eqs. (26)-(29), we find

4E1
.&(.+ +~) (30-a)

*) ‘2 (AE)

for E2~AE + E and

4(E2-AE) E2-AE 1/2

“&”) = # [& + -I (+
(30-b)

.-

forE2&AE+E1.

Equations (28) and (29) have been derived previously by Stabler.12

To include the effect of acceleration of the incident electron by the

atomic potential, we assume its energy before the encounter collision is E2

+ eq(r). Since the kinetic energy of the target electrons is always less

+ eq > AE + El is always satisfied forthan q(r), the relation E2 _

AE~ E2. Then, the cross section per unit energy transfer becomes

&=&r&+-l
(31)

to

To simplify the

forAE~ E2. In the next section we apply this cross section

calculate electron-impact ionization of highly stripped ions.

calculation we use the atomic potential evaluated in the Thomas-Fermi

approximation.

. .
To investigate the plasma screening effect on the cross section per unit

energy loss we integrate Eq. (23) over the appropriated momentum transfer.

The result can be written as

-1o-
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{

1 + (1 +AE/E1)l’2

*
(EDH/E1) + [1 + (1 + AE/El)l’2]2

(32)

1 - (1 +AE/E1)l’2
+

(ED#E1) + [1 - (l+AE/E1)l’2]
2

r
*(El/EOH)

1/2

+ ‘1
~ ‘an-l (l+A

“E }

9
DH)”

where EDH = (FkDH)2/2m.

In Fig. 2, we plot @/d(AE) as a func~ionofAE/E1 forkOH/kl =

o, 10-2, 10-’, l.OO Plasma screening decreases the cross section

substantially whenever the ratio of the Debye-Huckel screening length

‘OH
to the orbital radius of the outer bound electron becomes less than ten.

-11-
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III. ELECTRON COLLISIONAL IONIZATION

In this section we apply the cross section per unit energy transfer to

calculate electron-impact ionization of ions. The basic approximations used are:

(1) the incident electron interacts with only one target electron at a time, (2)

the target electron is assumed to be ionized whenever the energy transfer is

greater than its binding energy, (3) the target electron is considered as a free

electron during the collision.

In our calculation we assume that the target electrons are independent

scattering centers. The assumption is justified if the effective interaction

between the incident electron and the target particles occurs in a relatively

small region as compared to the atomic dimension. This is certainly the case if

the energy

Using

section is

transfer to the target electron is large compared to the binding energy.

the binary-encounter collision approximation, the ionization cross

given in terms of the energy transfer cross section as

=77’; dcr(E,c)
o(E) o 0 ~(r,i~ p(r,s) d(AE) ds 4nr2dr , (33)

where p(r,c) is the energy distribution of the target electrons at the

radius r and I(r,c) is their local ionization potential. The target

electrons are assumed to have an isotropic velocity distribution.

To simplify the computation, we calculate the energy distribution of the

target electrons using the Thomas-Fermi approximation. This allows us to

compute the total ionization cross section without knowing the energy levels

of the ion. Using the Thomas-Fermi scaling variables, we a“

ionization cross section for any ion in the periodic table.. --

so obtain a scaled

-12-



A. Thomas-Fermi Approximation

In the Thomas-Fermi approximation, the electron energy distribution for

an isolated ion is

(2m 3/2
P(r,c) de = 2d3p/t’)3.

-473
d~ d~

Z!nll (34)

forc~p +*(r). The quantities and ~(r) are the chemical

potential and the electrostatic potential of the ion. In our calculation, we

also let e.p(r)be the atomic potential acting on the incident electron.

The electrostatic potential is obtained from the solution of the

following equations:

Vzy(r) =4nen(r) , (35)

n(r) = (1/3n2) [2m/fi2]3/2 (p + q(r)) 3’2 ;

the boundary conditions are

q(r)+ Ze2/r as r+ O ,

2
~(r) =% r>r

o’

where Z* is the ionizaton state of the ion. The quantity r. is defined to

be the radius of the ion at which n(ro) = O. The chemical potential p is -.
equal to -Z*e2/ro.

In our calculation, we determine the ion radius for a given ionization

state using the numerical result in Ref. 13. We then integrate Eq. (35)

inward to obtain the electrostatic potential, q(r).

-13-



B. Ionization Cross Section

Using the electron energy distribution function p(r,c) calculated in

the Thomas-Fermi approximation, we obtain the total ionization cross section as

.-
‘

where ~min = AMAXI(O, &p - E). The term (&p(r) -c) is the
.. ionization energy for a group of electrons with kinetic energy c at the

radius r. For the electrons inside the radius rmwhich~(rm) = E,

. .

only these electrons

to the ionization.

After algebraic

integral of the form:

where

with kinetic energy eqI-

manipulations, we reduce

3/2
u= 4n~ 4(1,+12) 9

arjf

Ec_e~cq +IJ contribute

Eq. (36) to

+ (E!cPy
1

‘m
‘r

r2dr

[

2 ( +V)3’2 - (@iE)3’2)
12 0 (1+-*-)

~ ( W-p

5/2 - (q+)5/2)**((WV)

- +.((eW)3/2- (eq-E)3/2)]

a one-dimensional

.

(37)

(38)

(39)

-14-



We find it convenient to use the following Thomas-Fermi variables:

x =Z1/3 r/b ,

(Ze2/x) x(x) = ~(r) + p ,

2/3 a
b = (~) $ = 0.8850a ,

where a. is the Bohr radius. We can then write the total ionization cross

section as,

5/2a 2/Z1/3(E/21H)] F(rm/ro,Q) ,u(E,Z*,Z) = [~ (b/ao) o (40)

where Q = Z*/Z and IH = the ionization potential for hydrogen atom.

The universal function F(rm/ro, Q) is given in terms of the integrals

‘1 and 12’ involving the Thomas-Fermi potential and the cross section per

unit energy transfer for binary-encounter collision. For a given ionization

state, we have evaluated the function F numerically for different values of

rm/ro. Results are plotted in Fig. 3. This figure summarizes the

ionization cross sections for several thousand ions.

c. Ionization Rate Coefficient

The ionization rate coefficient is obtained by integrating the cross

section over the electron distribution function. For a Maxwellian electron

distribution, the ionization rate coefficient takes the following form:

~ 2 fi e-E/kTdE
R(Z,Z*,kT) =; u(E,Z,Z*) ——

‘fip
Y

I(Q)

where I(Q) = Z*e2/ro is the ionization potential of the ion.

.

(41)
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Substituting Eq. (40) for the cross sect-

16fi (b/ao)5’2a02 21 1/2

R =

&z
( +) (

on into Eq. (41),

I~b
G(Q,k~)

~) (42)
(k~)3/2 ‘

where k~ = kT/(Z4’3e2/b). The function G(Q,k~) is given by

Y.

G(Q,k~)
x (Ym)

=J F(ym/yo,Q) exp - (F +} )/ky
o m o

.

[

X (Yin) x’ (Ym)
x

1
~ - ~ “m ‘

m
m

l/3r /b andywhere y. = Z o
m= Z1’3 rm/b.

The ionization rate coefficient given by Eq. (42) scales with the nuclear

charge as Z‘1 if the temperature is scaled as k~/(Z4’3e2/b). The numerical

results for the function G(Q,k~) are plotted in Fig. 4.

D. Comparison with Other Calculations

To test our method, we compare our results to other theoretical

calculations. In Figs. 5 and 6, we plot our cross sections for nickel and

gold ions together with the Born cross sections computed by E. J. McGuire.6

In his calculation both the ionization energy and wavefunction were obtained

from the solution of the Schrodinger equation using Herman-Skillman

potential. The comparison shows that our results are within a factor of two

of the Born approximation. However, our calculation is much simpler and does

.’ not require knowing the sub-shell binding energies of the ion. The results

are expressed in terms of a function which scaled with Q (Q = Z*/Z) and can be
. .. used to calculate ionization cross sections for any ion.

Also plotted in Figs. 5 and 6 are cross sections computed using

semi-empirical formula of Golden and Sampson for hydrogenic ions.2 The

ionization energies used were obtained from the screened hydrogenic

-16-



14model. In this model the energy levels which depend only on the principal

quantum number n are computed using screening constants. 14
The comparison

shows that the hydrogenic approximation significantly underestimates the cross

section at very high energy, E = 10 keV. This is due to the neglect of

sub-shell splittings in the hydrogenic model. For heavy ions such as nickel

and gold, the sub-shell splitting energies are large.

Fig. 7 shows the ionization cross section of Na-like Ar ion as a function

of energy. Also shown are the cross sections calculated in a distorted-wave

Born exchange approximation.7 In these calculations the electron

distorted-wave function was generated using a local energy-dependent potential

which includes the direct term of the frozen-core Hartree-Fock and a

semi-classical exchange term. Cross sections for 3s ionization only are

represented by the dashed curve. Above the inner-shell ionization threshold,

the figure shows that inner shell ionization can be a factor of four larger

than the 3s ionization. The comparison also shows

include inner shell ionization, agree within 50% w“

calculation.

that our results, which

th the distorted-wave

In Fig. 8 we compare our rate coefficients for ionization of Na-like Ar

to a distorted-wave Born exchange calculation. The comparison shows that our

results agree reasonably well with the distorted-wave approximation.

E. Secondary Electron Energy Distribution

In many applications of the Boltzmann equation to simulate non-Maxwellian

electron distribution in plasmas, one needs to know the energy distribution of

the secondary electrons produced by electron-impact ionization of ions. The

Boltzmann collisional integral describing the ionization process is usually

expressed in terms of the differential ionization cross section du/dcs,

where cs is the kinetic energy of the

Using the cross section per unit

obtain

secondary electron.

energy transfer derived in Sec. IID, we

-17-



where

. . and cmin = AMAX(O, c +ep - E). The energy range for the secondary

electron is O: es~ E + p.

Integrating over the variables r and E, we find

(Z4’3e2) cI13JEJ. 4v@(b/ao)5’2 ao2 z4/3 2

dcs
Fs(rm/ro, Q, Es/(+)) s (45)

z“ 3 (E/*1~)

where Fs is a universal funct”

cross section per unit energy

We have applied Eq. (45)

on given in terms of an integral involving the

transfer and the Thomas-Fermi potential.

to calculate the secondary electron energy

distribution produced in electron-impact ionization of gold

are shown in Fig. 9. For an incident electron with kinetic

an appreciable fraction of secondary electrons are produced

greater than the ionization potential.

ions. Our results

energy E = 1 kev,

with energy

-18-



IV. SUMMARY

We have derived a differential cross section per unit

transfer for binary-encounter collisions. We applied this

calculate electron-ion impact ionization by assuming: (1)

energy and momentum

cross section to

the incident

electron interacts with only one target electron at a time, and (2) the target

electron is ionized whenever the energy transfer is greater than its binding

energy. In our calculation, the bound electron energy distribution is

calculated from a Thomas-Fermi potential. Using the Thomas-Fermi variable, we

expressed both the ionization cross section and rate coefficient in a scaled
..

form, which can be used for any ion.

We have compared our results to recent Born and distorted-wave Born

exchange calculations for electron-impact ionization of partially stripped

ions. The comparison shows that our results agree within a factor of two with

the best quantum calculation available. However, our calculation is much

simpler than the quantum approximations but yet gives cross sections

sufficiently accurate for many applications.
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Fig. 1.

Fig. 2.

Fig. 3.
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Fig. 5.
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FIGURE CAPTIONS

~ and ~’ are the relative velocities before and after the

collision. ~cm is the

velocity of the target

The differential cross

vs. AE/E; AE = energy

center of mass velocity. ~1 is the initial

electron.

section per unit energy ‘transfer is plotted

transfer and El = kinetic energy of the

target electron;
‘DH = 2T/ADH, ADH = Debye-Huckel

screening length.

The universal function F(rm/ro,Q) used to ca”

cross section [Eq. (40)] is shown.

The universal function G(Q,k~) used to calcu”
coefficient [Eq. (42)] is illustrated.

culate ionization

ate ionization rate

.12+
The ionization cross section for NI is potted as a function of

incident electron energy. The dashed curve represents the scaled

Born cross section calculated by E. J. McGuire.6 The dotten curve

was calculated by using the hydrogenic formula of Sampson and

Golden.z The sub-shell splittings of the energy levels were not

included.

The ionization cross section for Au
14+

is plotted as a function of

incident electron energy. The dashed curve represents the scaled

Born cross section calculated by E. J. McGuire.6 The dotted curve

was calculated by using the hydrogenic formula of Sampson and

Golden. The sub-shell splittings of the energy levels were not

included.

The ionization cross section for Ar
7+

is plotted as a function of

incident electron energy. The dashed curves represent cross

sections calculated by using the distorted-wave Born exchange

approximation.
7
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FIGURE CAPTIONS, Continued

Fig. 8. The ionization rate coefficient for Ar
7+

is plotted as a function

of electron temperature. The dashed curves represents the rate

coefficients calculated by using the distorted-wave exchange

approximation. 7

Fig. 9. The secondary electron energy distributions are shown for incident

electron energies 1 keV and 4 keV.
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